La Asociación Nacional de Productores de Energía Fotovoltaica (Anpier) considera que la tarifa eléctrica podría bajar hasta un 20% si se retiran a las eléctricas las desproporcionadas sobrerretribuciones por la generación de energía nuclear e hidráulica. La Asociación Nacional de Productores de Energía Fotovoltaica asegura que, “si las eléctricas percibieran un beneficio razonable por los megavatios que generan con estas tecnología”, el sistema se podría ahorrar más de 5.000 millones de euros al año, un importe suficiente para “neutralizar en seis años el déficit de tarifa que se ha generado a causa de esta disfunción del sistema”. El Gobierno, considera, debe realizar un “ejercicio de transparencia hacia el ciudadano” y auditar los costes de producción de la energía en función de las distintas tecnologías empleadas, con el objetivo de que a los españoles no se les repercuta unos sobrecostes “inexistentes”, que han generado a su juicio “una colosal deuda virtual”. Anpier indica que tanto la Comisión Europea como la Comisión Nacional de la Competencia (CNC) han emitido informes en los que aprecian “una competencia insuficiente en el sector energético” que favorece “una compensación excesiva de algunas infraestructuras, tales como centrales nucleares”. “La ciudadanía se ha dado cuenta y el cambio de modelo es inevitable. Al sol no se le puede combatir ni eclipsar con publicidad”, afirmó el presidente de Anpier, Miguel Ángel Martínez-Aroca.a del convenio, celebrado la mañana de ayer en Casa Morelos también acudieron la directora general del Programa de Emisiones Bajas en México, Ana Silvia Arrocha Contreras; Jesús Sánchez Isidoro, presidente municipal de Valle de Chalco, Estado de México; y la diputada Griselda Rodríguez Martínez, presidenta de la Comisión de Medio Ambiente del Congreso del Estado. De igual manera estuvieron presentes el secretario de Gobierno, Jorge Messeguer Guillén; la secretaria de Innovación, Ciencia y Tecnología, Brenda Valderrama Blanco; el secretario de Administración, Carlos Riva Palacio Than; y el delegado de la Semarnat en Morelos, Martín Vargas Prieto; además de investigadores y directores de centros de investigación. http://www.evwind.com/2013/09/13/plan-de-energias-renovables-eolica-fotovoltaica-y-termosolar-para-reducir-emisiones-de-co2/.Energías renovables: IBM desarrolla un nuevo sistema de pronóstico de energía solar y eólica. La solución combina la predicción y el análisis meteorológico para pronosticar con exactitud la disponibilidad de la energía solar y eólica. IBM (NYSE: IBM) anunció una avanzada tecnología de modelado climático y energético que ayudará a las empresas suministradoras a aumentar la confiabilidad de los recursos de energía renovable. Esto permitirá a las empresas de energía integrar más energía renovable a la red eléctrica, ayudando a reducir las emisiones de carbono y a mejorar sustancialmente la producción de energía limpia para consumidores y empresas. La solución, denominada “Hybrid Renewable Energy Forecasting” (HyRef) utiliza capacidades de modelado meteorológico, tecnología avanzada de imágenes de nubes y cámaras direccionadas al cielo para rastrear el movimiento de las nubes, mientras que los sensores en las turbinas monitorean la velocidad del viento, la temperatura y la dirección. Cuando se combina con tecnología analítica, la solución basada en asimilación de datos puede producir pronósticos meteorológicos locales exactos dentro de una granja de turbinas con hasta un mes de anticipación, o en incrementos de 15 minutos. Utilizando pronósticos meteorológicos locales, HyRef puede predecir el desempeño de cada turbina de viento individual y estimar la cantidad de energía renovable generada. Este nivel de conocimiento permitirá a las empresas de energía administrar mejor la naturaleza variable de la generación de energía solar y eólica, y pronosticar con más exactitud la cantidad de energía que puede ser redireccionada a la red eléctrica o almacenada. También permitirá a las organizaciones de energía facilitar la integración con otras fuentes convencionales, como carbón y gas natural. “Las empresas de energía del mundo están utilizando una serie de estrategias para integrar nuevos recursos de energía renovable en sus sistemas operativos a fin de alcanzar un objetivo base de un mix de energía renovable de 25% globalmente hacia el año 2025,” comentó el Vicealmirante Dennis McGinn, Presidente y CEO del American Council On Renewable Energy (ACORE). “Los datos de modelado y pronóstico meteorológico generados por HyRef mejorarán significativamente este proceso y, a su vez, nos pondrán un paso más cerca de maximizar todo el potencial de los recursos renovables.” State Grid Jibei Electricity Power Company Limited (SG-JBEPC), una subsidiaria de State Grid Corporation of China (SGCC), está utilizando HyRef para integrar energía renovable a la red. Esta iniciativa liderada por SG-JBEPC es la fase 1 del proyecto de demostración Zhangbei 670MW, la mayor iniciativa de energía renovable del mundo, que combina energía eólica y solar, almacenamiento y transmisión de energía. Este proyecto contribuye al plan de 5 años de China de reducir su dependencia de combustibles fósiles. Utilizando la tecnología de IBM para pronosticar las corrientes de aire, la fase uno del proyecto Zhangbei se propone aumentar la integración de la generación de energía renovable en un 10%. Esta cantidad de energía adicional puede abastecer a más de 14,000 viviendas. El uso eficiente de la energía generada permite a la empresa reducir las interrupciones de energía eólica y solar, en tanto que el análisis ofrece la inteligencia necesaria para mejorar las operaciones de la red. “La aplicación de análisis y el aprovechamiento de Big Data permitirá a las empresas de energía abordar la naturaleza intermitente de la energía renovable y pronosticar la producción de energía eólica y solar, en formas que nunca antes se habían hecho,” señaló Brad Gammons, Gerente General de la Unidad Global Energy and Utilities Industry de IBM. “Hemos desarrollado un sistema inteligente que combina el pronóstico meteorológico y energético para aumentar la disponibilidad de los sistemas y optimizar el desempeño de la red de suministro.” Este proyecto se basa en otra iniciativa smarter analytics de IBM en Vestas Wind Systems de Dinamarca, el fabricante mundial de turbinas de energía eólica. Vestas, junto con la tecnología de análisis big data y supercómputo de IBM, puede colocar estratégicamente turbinas eólicas sobre la base de petabytes de datos de informes meteorológicos, fases de marea, sensores, imágenes satelitales, mapas de deforestación e investigación de modelado climático. Estos conocimientos pueden no sólo ofrecer mejoras en la generación de energía sino también reducir los costos operativos y de mantenimiento durante el ciclo del proyecto. HyRef representa avances en la tecnología de modelado climático, que surgen de otras innovaciones que cambiaron el juego, tales como Deep Thunder. Desarrollado por IBM, Deep Thunder proporciona micro-pronósticos de alta resolución para el clima de una región –que va del área metropolitana a un estado entero– con cálculos tan detallados como cada kilómetro cuadrado. En combinación con los datos de negocio, puede ayudar a las empresas y los gobiernos a adaptar los servicios a medida, cambiar los itinerarios e implementar equipos para minimizar los efectos de importantes sucesos climáticos, reduciendo costos, mejorando el servicio e incluso salvando vidas. http://www.evwind.com/2013/09/06/ibm-promueve-las-energias-renovables-con-nuevo-sistema-de-pronostico-de-energia-solar-y-eolica/-itarias en localidades que no tienen energía eléctrica. Miguel Cruz Cobo, uno de los promotores del proyecto de hidroeléctricas comunitarias impulsado por Semilla de Sol, expresa: “La idea de implementar microhidroeléctricas surgió de las tres comunidades. Al momento ya está lista toda la infraestructura pero falta la distribución. Ya estamos pensando en instalar computadoras, taller de carpintería y mecánica, además de otras actividades productivas que beneficiarán significativamente a la comunidad”. “Actualmente estamos trabajando con dos pequeñas centrales en Quiché. Una de ellas proveerá de energía a tres comunidades, dos de Nebaj y una de Chajul, donde no llega la energía de red. El proyecto tiene como característica que aprovechará la red hídrica de la región y abre muchas posibilidades de desarrollo. Por ejemplo, en el área no existe un centro de salud que pueda tener vacunas porque no hay refrigeración. Igualmente, se extenderán los horarios para los estudios. Unas 160 familias serán beneficiadas”, refiere Armas. Aunque todas las intervenciones humanas en la naturaleza tienen diversos grados de impacto, este ingeniero cuenta que la generación a través de pequeñas plantas comunitarias no representa desplazamiento de pobladores ni ocasiona que baje el nivel de los ríos. Según Armas: “Por otra parte, las poblaciones que se benefician con esta forma de generación se conciencian sobre la importancia de mantener los bosques para que se mantengan los caudales de agua”. Secar el café al sol Aunque es de importancia vital para la existencia de la civilización, la generación de energía también puede tener un impacto negativo para el medioambiente, especialmente cuando se realiza con combustibles fósiles, comenta Juan Rodríguez, de Global Tree Co., empresa que ha desarrollado un sistema llamado Read System, basado en paneles de energía solar para el secado del café. Rodríguez y Samuel Coronado son dos ingenieros que se conocieron en 1989, cuando iniciaban sus estudios diversificados. Coronado estudió ingeniería industrial en la Universidad del Valle y Rodríguez cursó sus estudios en la escuela agrícola Zamorano, de Honduras. Ambos desarrollaron un sistema llamado Read System, que propone realizar el secado de granos, especialmente café, utilizando paneles solares. “Es un sistema de secado que consta de paneles solares, bombas de recirculación, tuberías de agua, aislamientos térmicos, tanques de almacenaje, ventiladores de precisión e intercambiadores de calor”, relata Coronado, quien agrega: “Los paneles absorben la energía solar con una eficiencia del 95%, ésta es transmitida al agua que circula por las tuberías. El líquido caliente se almacena el tanque central, de donde circula hacia las secadoras mecanizadas. En este punto, intercambiadores de calor agua-aire deshidratan y calientan el aire ambiental, lo que seca el café”. “Una de las principales ventajas para los caficultores es que el secado con energía térmica solar permite un mejor control de la temperatura, puesto que se logra mantener un calor constante. Con el sistema actual, esto depende mucho de la habilidad que tenga el fogonero”, advierte Rodríguez. En la aldea El Novillero, de Santa Lucía Utatlán, Sololá, se encuentra el parque ecológico y área protegida Corazón del Bosque, proyecto de la Asociación Artesanal para el Desarrollo La Guadalupana. Vincular el beneficio a la comunidad con el aprovechamiento sostenible de los recursos naturales fueron las inquietudes que originaron este proyecto, que a la fecha genera 13 puestos de trabajo permanentes y más de 800 temporales. Corazón del Bosque ofrece tours para conocer el lugar, que cuenta con cabañas, hospedaje, área para acampar, temascales (sauna maya), un altar para rituales mayas y avistamiento de aves. Entre sus prácticas de sostenibilidad cabe mencionar la reforestación y una minicentral hidroeléctrica que provee de energía a todo el proyecto, que tiene un restaurante con capacidad para 100 personas; un hospedaje para 34 y varias cabañas con espacio para 7 visitantes cada una, además del proyecto de reforestación y artesanías. Contar con una generadora de electricidad propia les permite atender a sus huéspedes y turistas con todas las comodidades. Al mismo tiempo, la generadora implica que deban mantener vigente la reforestación, puesto que la existencia de la planta depende del caudal del río que la alimenta, y este depende de los árboles, lo que implica que debe mantenerse el bosque. Es posible obtener energía aprovechando el calor interno de la Tierra, que eleva la temperatura del agua del subsuelo transformándola en vapor. Si las características de las rocas que rodean este vapor son adecuadas, se forman grandes reservas que pueden ser utilizadas para generar energía eléctrica o para baños de vapor. En el país existen condiciones para desarrollar la energía geotérmica, pero hasta el momento solamente existen tres centrales geotérmicas, propiedad de una empresa internacional llamada Ormat: en Zunil, Quetzaltenango; Amatitlán, Guatemala, y San Vicente de Pacaya, Escuintla. Todas ellas tienen instalada una capacidad para producir 24MW, aunque generan aproximadamente 17MW cada una. El recurso geotérmico es, por ley, propiedad del Estado y solo puede ser explotado mediante concesiones que otorga el INDE en contratos a las empresas interesadas en generar con este recurso.

Cómo producir toda la electricidad con energías renovables: eólica, fotovoltaica y termosolar

REVE

El suministro eléctrico con energías renovables (eólica, fotovoltaica y termosolar) podría estar garantizado en 20 años.

La producción energética con energías renovables en la España peninsular, respecto a la demanda eléctrica, es del 35%, aproximadamente, lo que a su juicio revela que hay “un enorme potencial” en energía solar, eólica e hidráulica, sin olvidar el potencial de otras posibilidades todavía en fase de desarrollo como las mareas, olas y geotérmica.

El suministro eléctrico en España podría estar garantizado por energías renovables en el plazo de unos veinte años, según una tesis doctoral del ingeniero industrial Santiago Galbete, doctor por la Universidad Pública de Navarra (UPNA), aborda los aspectos técnicos y económicos de la propuesta

La tesis, que tiene por título “La viabilidad técnico-económica para un suministro 100% renovable en España”, concluye que “el desarrollo de un sistema de generación renovable no supone para la industria actual un reto inasumible en absoluto y 20 años debieran ser suficientes para su consecución”.

La tesis doctoral de Santiago Galbete Goyena, Ingeniero Industrial, ha tenido como objetivo buscar soluciones viables técnica y económicamente para lograr un sistema eléctrico 100% renovable para España. Su investigación concluye que “el desarrollo de un sistema de generación renovable no supone para la industria actual un reto inasumible en absoluto y 20 años debieran ser suficientes para su consecución”.

En su estudio, Santiago Galbete recuerda que la producción energética renovable en la España peninsular, respecto a la demanda eléctrica, es tan solo del 35%, aproximadamente. “Tenemos un país muy pobre en recursos no renovables, especialmente gas natural, petróleo y uranio, prácticamente inexistentes, pero sin embargo disfrutamos de un enorme potencial en energía solar, eólica e hidráulica, sin olvidar el potencial de otras posibilidades todavía en fase de desarrollo como las mareas, olas y geotermia. Por ello, parece evidente que caminar hacia un sistema energético de fuentes renovables locales es lo recomendable”. En ese contexto, hace hincapié en que las ventajas industriales, sociales y económicas de tal decisión “superarían con creces, a la larga, las evidentes dificultades que este cambio, sin duda, entraña”.

Su tesis doctoral, “La viabilidad técnico-económica para un suministro 100% renovable en España” ha obtenido la calificación de apto “Cum laude” por unanimidad y ha sido dirigida en la Universidad Pública de Navarra por Luis Marroyo, profesor titular de Ingeniería Eléctrica, Oscar Alonso, del Departamento de Ingeniería Eléctrica y Electrónica; y Katrin Simon profesora titular, del Departamento de Gestión de Empresas.

En concreto, este investigador plantea un conjunto de soluciones para demostrar que un sistema eléctrico como el de España puede funcionar de forma garantizada a partir de, únicamente, fuentes renovables, de manera eficiente y con costes del mismo rango a los del sistema actual.

A lo largo de la elaboración de esta tesis y de la mano de Acciona Energía, con el fin de conocer la opinión de este proyecto dentro de los ámbitos más actuales en materia renovable en el mundo, se presentaron artículos en diferentes congresos internacionales (Valencia, Amsterdam, Londres, Pekin).

Combinación de recursos

En el transcurso de su investigación, Santiago Galbete preparó un entorno matemático que permitiera utilizar modelos energéticos e incorporar la máxima información real, como por ejemplo series horarias de producción de las diferentes tecnologías renovables durante un periodo de diez años. Según explica, “una de las principales dificultades fue desarrollar una estrategia para compensar las rápidas variaciones de producción de energía que tienen lugar con los recursos solar y eólico. Para solventar ese problema de forma eficiente, lo mejor es poder almacenar la energía sobrante en un momento dado para aprovecharla más adelante”. Por ello, la tesis ofrece también nuevas técnicas y analiza distintas opciones de almacenamiento de energía.

La solución que ha considerado más idónea, desde el punto de vista técnico, pasa por una combinación de diferentes tecnologías renovables. Así, respecto a la energía eólica terrestre, deberían incrementarse los actuales 22 GW (gigavatios) hasta 48 GW. “Teniendo en cuenta la potencia de los aerogeneradores actuales, este aumento supondría instalar un promedio de 200 aerogeneradores en cada provincia española y sería suficiente un período de 20 años”. En energía solar, habría que pasar de los 6 GW a 27,5 GW, para lo cual “existen recursos y superficie disponible. Teniendo en cuenta que sólo durante 2008 se conectaron a la red 2,3 GW, el tiempo necesario para alcanzar la producción estimada no sería un problema”.

Por lo que respecta a energía procedente de biomasa, sería necesario disponer de cerca de 12 GW de potencia, algo también factible en un plazo de veinte años. En energía hidráulica, se requiere únicamente una repotenciación de las centrales existentes desde los 14,8 GW actuales hasta 17 GW en la propuesta 100% renovable. En cuanto a las centrales de bombeo, con añadir a las actuales (2,7 GW) aquellas que están ya proyectadas sería suficiente para alcanzar los 6,1 GW necesarios.

Veinte años debieran ser suficientes para instalar la potencia necesaria para conseguir un sistema eléctrico 100% procedente de energías renovables —explica este ingeniero—. Sin embargo, a la vista de los fuertes obstáculos legislativos que están sufriendo la generación renovable en España, en la tesis he planteado una opción más conservadora y he considerado que, mediante una trayectoria cómoda, el suministro 100% renovable podría alcanzarse hacia el año 2050”.

Costes inferiores

Una vez probada la viabilidad técnica para un suministro 100% renovable, el objeto de este trabajo, no fue la búsqueda financiera de oportunidades de inversión, sino la viabilidad económica de un sistema energético nacional 100% renovable. Para ello, se han actualizado los nuevos costes de producción con base en las innovaciones tecnológicas. De este cálculo, se pueden extraer conclusiones tanto para energías renovables como convencionales.

El LCOE (Leverized cost of energy o coste normalizado de la energía) es la magnitud más representativa en el ámbito internacional para el estudio de los costes de la energía. En este sentido, el autor indica que el actual mix energético tiene costes de producción inferiores a un hipotético 100% renovable. Sin embargo, “se observa una tendencia de convergencia entre ambos tipos de costes, consecuencia de la evolución tecnológica de las energías renovables y de considerar otras externalidades de las energías no renovables. Incluso se observa cómo para estimaciones realizadas para el año 2050, los costes de las energías renovables serán inferiores a los de las energías convencionales”.

Un segundo método utilizado en esta tesis, que valida los resultados anteriores, es el estudio de la Rentabilidad Relativa de la Inversión (TIR). Las estimaciones para el año 2050 prevén para las energías renovables tasas de rentabilidad superiores (4.1%) a las del mix actual (3.7%).

Con el objeto de alcanzar un sistema 100% renovable estacionario, en esta tesis se propone un periodo de transición que permitiría alcanzar un sistema energético 100% renovable en 2050.

Santiago Galbete es Ingeniero Industrial por la Universidad de Zaragoza. Realizó estudios de posgrado en la European School of Management and Technology (Alemania) y en la Universidad Pública de Navarra, donde ha obtenido el título de Doctor. Asimismo, cursó el Executive MBA de Acciona en la Escuela de Organización Industrial (Madrid). Desde el año 2004 trabaja en Acciona Energía, como director de proyectos internacionales de parques eólicos y fotovoltaicos localizados en los cinco continentes (Estados Unidos, Canadá, Australia, Alemania, India, Corea, Sudáfrica…).

https://n-1.cc/file/download/1763311

https://www.evwind.com/2013/10/01/el-suministro-electrico-con-energias-renovables-eolica-fotovoltaica-y-termosolar-podria-estar-garantizado-en-20-anos/